域名預(yù)訂/競(jìng)價(jià),好“米”不錯(cuò)過(guò)
AutoML的概念源自2012年學(xué)術(shù)界提出一個(gè)新觀點(diǎn)Programming by Optimization(PbO),字面上的意思是指以最優(yōu)化程序開(kāi)發(fā),實(shí)質(zhì)上就是要解決建模時(shí)依賴人工的問(wèn)題。
AutoML更大范圍內(nèi)為世人周知是因?yàn)楣雀鐲loud AutoML Vision產(chǎn)品的發(fā)布,這款產(chǎn)品可以用AI設(shè)計(jì)AI,讓更多對(duì)機(jī)器學(xué)習(xí)了解有限的人,把Google級(jí)的AI技術(shù)運(yùn)用到產(chǎn)品打磨中,從而降低了使用機(jī)器學(xué)習(xí)的門(mén)檻,這也是智鈾科技正在做的事情,不同的是,谷歌AutoML目前專注于圖像識(shí)別領(lǐng)域,智鈾科技目前主要以結(jié)構(gòu)化數(shù)據(jù)為主,致力于為企業(yè)帶來(lái)全流程、自動(dòng)化的建模和部署能力,幫助企業(yè)構(gòu)建人工智能核心,實(shí)現(xiàn)AI驅(qū)動(dòng)。
目前,傳統(tǒng)行業(yè)使用機(jī)器學(xué)習(xí)仍面臨著巨大的挑戰(zhàn)。
1、建模過(guò)程繁瑣
2、AI人才匱乏
3、人力成本大
4、算法設(shè)計(jì)周期長(zhǎng)
5、系統(tǒng)實(shí)施維護(hù)困難
針對(duì)這些痛點(diǎn),夏粉博士帶領(lǐng)智鈾科技團(tuán)隊(duì)開(kāi)發(fā)了自動(dòng)化機(jī)器學(xué)習(xí)產(chǎn)品“小智”。
小智可以免費(fèi)試用,支持上限為 200MB 的 CSV 訓(xùn)練數(shù)據(jù)量、10MB的數(shù)據(jù)預(yù)測(cè),無(wú)需編寫(xiě)代碼,學(xué)習(xí)數(shù)學(xué),就可以讓你親身體驗(yàn)機(jī)器學(xué)習(xí)的魅力。模型精度也無(wú)需擔(dān)心,小智可以幫您完成簡(jiǎn)單便捷、高質(zhì)高效的建模。
試用方法:進(jìn)入智鈾科技官網(wǎng),在產(chǎn)品頁(yè)面點(diǎn)擊免費(fèi)試用即可
智鈾科技發(fā)布的自動(dòng)化機(jī)器學(xué)習(xí)產(chǎn)品“小智”,可以自動(dòng)構(gòu)建高精度模型,為用戶提供從數(shù)據(jù)預(yù)處理、特征工程、模型調(diào)參、模型評(píng)估、模型預(yù)測(cè)到結(jié)果分析等一站式服務(wù),其獨(dú)創(chuàng)的參數(shù)搜索算法解決了人工調(diào)參費(fèi)時(shí)耗力的問(wèn)題,獨(dú)創(chuàng)的特征工程算法,令組合特征挖掘效率提升上千倍。另外,小智還支持千億樣本、千億特征數(shù)據(jù)量,模型從淺層到深層靈活支持。
除了以獨(dú)創(chuàng)的算法實(shí)現(xiàn)了自動(dòng)建模,小智在產(chǎn)品的交互方面也貫徹著簡(jiǎn)單易用的原則,直觀的web界面允許任何人和小智進(jìn)行交互,不需要AI背景,用戶也可以一鍵完成建模,內(nèi)置的可視化效果,如ROC曲線圖和準(zhǔn)確&召回曲線,能夠使用戶對(duì)自己的業(yè)務(wù)有更深刻的理解。據(jù)某銀行客戶介紹:“在通用場(chǎng)景下,普通業(yè)務(wù)人員借助小智也能達(dá)到高級(jí)建模人員水平。”
隨著互聯(lián)網(wǎng)+時(shí)代的到來(lái),大數(shù)據(jù)在企業(yè)的落地應(yīng)用正在快速增長(zhǎng),而數(shù)據(jù)安全,也成為眾多企業(yè)的顧慮,這也催生了企業(yè)對(duì)于私有化部署的需求。據(jù)悉,小智將以產(chǎn)品的形式提供給行業(yè),除了支持公有云、SAAS模式外,還提供私有化部署。
AutoML仍然是一個(gè)在摸索中的新興領(lǐng)域,誰(shuí)能搶占技術(shù)占領(lǐng)市場(chǎng)尤為重要。目前,智鈾科技已經(jīng)與金融、醫(yī)療、物聯(lián)網(wǎng)等多個(gè)行業(yè)的公司合作為其提供服務(wù),產(chǎn)品的功能應(yīng)用涵蓋點(diǎn)擊率預(yù)估、反欺詐偵測(cè)、市場(chǎng)精準(zhǔn)營(yíng)銷以及個(gè)性化推薦等,滿足不同場(chǎng)景的不同需求,同時(shí)產(chǎn)品的有效性經(jīng)過(guò)實(shí)踐驗(yàn)證,不但能夠?yàn)槠髽I(yè)帶來(lái)收入的增長(zhǎng)并且節(jié)省成本。
整體建模流程
機(jī)器學(xué)習(xí)建模過(guò)程一般包含多個(gè)步驟,首先,數(shù)據(jù)科學(xué)家要對(duì)業(yè)務(wù)問(wèn)題進(jìn)行定義,抽象為數(shù)學(xué)問(wèn)題;對(duì)獲取到的數(shù)據(jù)進(jìn)行分析、理解、 清洗,劃分;其次進(jìn)行特征工程,如特征衍生、特征組合、特征選擇等,然后才能開(kāi)始進(jìn)行建模、訓(xùn)練、預(yù)測(cè)等。在小智平臺(tái),用戶只需上傳數(shù)據(jù),選定目標(biāo)名稱,其余步驟包括數(shù)據(jù)預(yù)處理、特征工程、調(diào)參、訓(xùn)練及預(yù)測(cè),得到分析結(jié)果,部署和監(jiān)控模型均由小智完成,實(shí)現(xiàn)真正端到端的全程自動(dòng)機(jī)器學(xué)習(xí)。這大大減少了缺乏機(jī)器學(xué)習(xí)知識(shí)用戶的使用難度。
機(jī)器學(xué)習(xí)工作流圖(綠色圓柱塊表示數(shù)據(jù),為整個(gè)工作流的基礎(chǔ),藍(lán)色的方塊為一個(gè)簡(jiǎn)單的建模流程,有簡(jiǎn)單問(wèn)題只需要走完藍(lán)色方塊就結(jié)束了,黃色的兩個(gè)方塊為模型需要上線,持續(xù)優(yōu)化改善的部分)
機(jī)器學(xué)習(xí)工作流如上圖所示,整個(gè)流程以數(shù)據(jù)為中心,循環(huán)往復(fù)。在使用小智的過(guò)程中,首先要收集建模需要的數(shù)據(jù),可能是業(yè)務(wù)相關(guān)數(shù)據(jù),也可能是從網(wǎng)上爬取的一些信息。我們可以將這些結(jié)構(gòu)化數(shù)據(jù)轉(zhuǎn)換為csv寬表或txt文件,放在本地、數(shù)據(jù)庫(kù)或HDFS上,然后上傳至小智,對(duì)數(shù)據(jù)集的格式進(jìn)行調(diào)整,例如編碼、分隔符、空值標(biāo)識(shí)、首行是否為特征名稱等。至此,用戶負(fù)責(zé)的數(shù)據(jù)準(zhǔn)備之前的步驟便完成了。
下一步為建立模型。當(dāng)用戶上傳數(shù)據(jù)到小智平臺(tái)后,小智會(huì)檢查和清理數(shù)據(jù),并且會(huì)以數(shù)據(jù)科學(xué)的角度給出所有特征的數(shù)據(jù)畫(huà)像。用戶選擇建模目標(biāo)后就可以開(kāi)始“一鍵式”自動(dòng)化建模了。小智會(huì)依次完成從數(shù)據(jù)清洗、特征工程、調(diào)參、選擇最優(yōu)算法、搭建模型、模型評(píng)估、模型發(fā)布的全過(guò)程,實(shí)現(xiàn)真正的“一鍵式”建模。模型評(píng)估階段可以監(jiān)控模型的預(yù)測(cè)性能,當(dāng)用戶認(rèn)為預(yù)測(cè)結(jié)果不理想時(shí)可以選擇重新訓(xùn)練模型以達(dá)到理想的預(yù)測(cè)結(jié)果。當(dāng)用戶完成模型訓(xùn)練并且選擇了合適的模型后,就可以部署模型了。 部署后,可以上傳CSV預(yù)測(cè)文件,對(duì)上傳的數(shù)據(jù)進(jìn)行批量預(yù)測(cè),或者使用模型API 進(jìn)行實(shí)時(shí)預(yù)測(cè)。
案例分析
為了實(shí)際感受小智的效果,并了解它到底和人工建模相比有什么優(yōu)勢(shì),我們使用一個(gè)廣告點(diǎn)擊預(yù)測(cè)案例來(lái)說(shuō)明,即通過(guò)廣告系統(tǒng)的結(jié)構(gòu);流量預(yù)估:設(shè)備號(hào)、手機(jī),區(qū)域(經(jīng)緯度)、訪問(wèn)時(shí)間;廣告主專業(yè):新型游戲等;創(chuàng)意特征;投放之后定向的特征;廣告位;環(huán)境等特征來(lái)預(yù)測(cè)某條投放廣告是否被點(diǎn)擊。
點(diǎn)擊率(click-through rate)是評(píng)價(jià)在線廣告效果的重要指標(biāo),對(duì)點(diǎn)擊率進(jìn)行預(yù)測(cè)建模在線廣告商尤為重要。我們可以用歷史的廣告投放數(shù)據(jù)建立一個(gè)模型,輸入未來(lái)一段時(shí)間的廣告投放數(shù)據(jù)進(jìn)行模型驗(yàn)證。分別進(jìn)行小智自動(dòng)化建模和手動(dòng)建模。
小智數(shù)據(jù)怎么做
該建模數(shù)據(jù)集是在線廣告點(diǎn)擊率預(yù)測(cè)競(jìng)賽的數(shù)據(jù),來(lái)自Kaggle競(jìng)賽,通過(guò)廣告ID、是否點(diǎn)擊、位置欄位、網(wǎng)站域名、網(wǎng)站種類、應(yīng)用ID、應(yīng)用領(lǐng)域、設(shè)備編號(hào)等屬性來(lái)預(yù)測(cè)廣告是否被點(diǎn)擊。本案例分析中我們只截取了其中一部分?jǐn)?shù)據(jù)集,并做了必要的數(shù)據(jù)清洗,每條樣本為一條廣告投放并且標(biāo)記了是否被點(diǎn)擊的數(shù)據(jù),最后一列“click”為目標(biāo),1表示點(diǎn)擊,0表示未點(diǎn)擊。已預(yù)先劃分好數(shù)據(jù)集,“train.csv”為訓(xùn)練集,“test.csv”為預(yù)測(cè)集。訓(xùn)練樣本集共320473個(gè),預(yù)測(cè)樣本79527個(gè),特征維度為23維。
在上傳數(shù)據(jù)階段,可以看到有一個(gè)虛線框,點(diǎn)擊虛線框火將文件拖拽至此即可實(shí)現(xiàn)上傳。虛線框中還有“點(diǎn)此下載測(cè)試數(shù)據(jù)”和“下載數(shù)據(jù)匿名化工具”兩個(gè)選項(xiàng),我們提供了一些公開(kāi)的測(cè)試數(shù)據(jù)可供用戶下載測(cè)試,加入用戶不想讓自己的數(shù)據(jù)上傳到公有云上,可以下載數(shù)據(jù)匿名化工具對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單的加密,使得數(shù)據(jù)特征名稱、敏感特征值隱藏,而且不會(huì)影響模型效果。
上傳數(shù)據(jù)后,可以看到小智中的數(shù)據(jù)概覽,點(diǎn)擊“確定并生成畫(huà)像”進(jìn)入到下一步,接著通過(guò)可視化操作選擇要預(yù)測(cè)的目標(biāo)變量與可用的特征變量,保存特征列表后即可進(jìn)行模型訓(xùn)練。對(duì)于分類任務(wù),特征變量可以分為類別型和數(shù)值型,小智可以自動(dòng)檢測(cè)變量類型,用戶也可以根據(jù)需求自定義修改類型,這又會(huì)節(jié)省很多精力。
小智的上傳數(shù)據(jù)界面
原始訓(xùn)練數(shù)據(jù)樣本集概覽
經(jīng)過(guò)匿名化處理的訓(xùn)練數(shù)據(jù)樣本集概覽
確定目標(biāo)變量無(wú)誤后,小智會(huì)根據(jù)目標(biāo)變量自動(dòng)分析模型類型,以及分析特征變量,并給出自動(dòng)質(zhì)量修復(fù)方案。
數(shù)據(jù)畫(huà)像示例
小智建模怎么做
處理完數(shù)據(jù)后就可以開(kāi)始建模了,小智全自動(dòng)建模不需要用戶做任何操作,只要等待模型訓(xùn)練完成即可。目前只支持二分類和回歸,主要采用常用的LR和GBDT算法,兼顧了性能與可解釋性。之后小智會(huì)進(jìn)行自動(dòng)建模、調(diào)參,用戶可以選擇模型中結(jié)果較好的一個(gè)。
模型訓(xùn)練完后可以查看訓(xùn)練足跡、模型評(píng)估、以及模型描述。
其中模型評(píng)估中有ROC曲線、Lift提升度、KS曲線、精確&召回曲線等指標(biāo),AUC等指標(biāo)采用交叉驗(yàn)證的計(jì)算值,Lift、KS等采用的是驗(yàn)證集上計(jì)算出的指標(biāo)。模型評(píng)估是我們?cè)u(píng)價(jià)模型好壞的標(biāo)準(zhǔn),在預(yù)測(cè)數(shù)據(jù)集上也有同樣的一個(gè)評(píng)估模塊。在模型描述中我們有特征重要性查看和歸因解釋,我們可以看到在模型中排列在前面的一些特征,比如我們可以選擇top K進(jìn)行重新建模,在以后收集數(shù)據(jù)時(shí)特別注重這些特征的完整性和正確性等。原因解釋可以查看預(yù)測(cè)正確的樣本的哪些屬性占主要正向原因,哪些屬性占主要的負(fù)向原因。還可以查看真實(shí)值和預(yù)測(cè)值相差最大的top K個(gè)樣本,查看是否是異常數(shù)據(jù)樣本。
模型描述中的特征重要度
模型描述中的原因解釋
小智部署怎么用
最后的部署就比較簡(jiǎn)單了,確定最合適的訓(xùn)練模型,然后選擇發(fā)布即可下載模型部署或者調(diào)用API,配合SDK使用進(jìn)行預(yù)測(cè)就行了。一般小智可以通過(guò)數(shù)據(jù)源或 API 進(jìn)行模型部署,其中數(shù)據(jù)源采用本地 CSV 文件。
與一般工程師人工建模效果對(duì)比
如下圖所示,通過(guò)運(yùn)用小智建立的廣告點(diǎn)擊預(yù)測(cè)模型,在預(yù)測(cè)集上的AUC 可達(dá)到 0.7294,能夠較準(zhǔn)確地識(shí)別出廣告流量是否被點(diǎn)擊,為廣告投放提供了重要支持;分析團(tuán)隊(duì)在收集到相關(guān)數(shù)據(jù)后,利用小智平臺(tái)能夠在 1 小時(shí)內(nèi)迅速構(gòu)建出模型并完成預(yù)測(cè);整個(gè)過(guò)程僅需要一名普通水平的數(shù)據(jù)分析師即可完成整個(gè)建模預(yù)測(cè)工作,不需要任何外部顧問(wèn),從而節(jié)約了大量成本。
在實(shí)際應(yīng)用中,小智不僅在廣告推薦領(lǐng)域,還有包括金融、能源、醫(yī)療、新零售、物流、制造、游戲等眾多領(lǐng)域的中都有很好的表現(xiàn)。
小智在預(yù)測(cè)集上的AUC 達(dá)到 0.7294
一般的算法工程師,借助開(kāi)源算法庫(kù)sklearn中的GBDT、RF、LR、Adaboost,以及Xgboost五種算法模型進(jìn)行建模分析。看到建模效果最好的模型是GBDT,AUC只有0. 7108,小于小智自動(dòng)建模的AUC 0.7294。
對(duì)比銀行某產(chǎn)品推薦的人工建模效果
建模場(chǎng)景: 預(yù)測(cè)目標(biāo)客戶在1個(gè)月內(nèi)購(gòu)買產(chǎn)品(5種產(chǎn)品)的可能性;
建模規(guī)模: 約3700萬(wàn)戶;
建模數(shù)據(jù): 根據(jù)客戶前一個(gè)月的表現(xiàn),對(duì)5類產(chǎn)品的持有和未持有分開(kāi)建立10個(gè)模型,每個(gè)數(shù)據(jù)集大小為200MB—8G;
建模效果: 與行內(nèi)建模團(tuán)隊(duì)模型效果基本相符。建模效率提升了近10倍,在合作銀行中一個(gè)人工模型上線一般需要2月左右,小智只需要不到一周就能完成建模,且能和銀行內(nèi)已有應(yīng)用系統(tǒng)無(wú)縫融合。
對(duì)同一模型評(píng)價(jià)指標(biāo)的分值,評(píng)估級(jí)別計(jì)算方法為: (小智分值-行內(nèi)基線)/行內(nèi)基線
最終效果對(duì)比表
申請(qǐng)創(chuàng)業(yè)報(bào)道,分享創(chuàng)業(yè)好點(diǎn)子。點(diǎn)擊此處,共同探討創(chuàng)業(yè)新機(jī)遇!
雖然我國(guó)汽車芯片行業(yè)還處在發(fā)展初期,但已經(jīng)迸發(fā)出無(wú)限潛力。一方面,智能汽車的發(fā)展不斷帶動(dòng)需求增長(zhǎng);另一方面,政策引導(dǎo)下,汽車芯片企業(yè)持續(xù)搶占高地。對(duì)此,在7月5日-7日舉辦的2023年中國(guó)汽車論壇上,中國(guó)汽車工業(yè)協(xié)會(huì)副秘書(shū)長(zhǎng)李邵華就做出表示,“中國(guó)將成為未來(lái)汽車芯片發(fā)展的集聚地”。車規(guī)芯片行業(yè)近日的
2023世界人工智能大會(huì)將于7月6日至8日在上海舉辦。云天勵(lì)飛將在大會(huì)上展示自主設(shè)計(jì)開(kāi)發(fā)的新一代邊緣計(jì)算芯片DeepEdge10系列SoC芯片,并公布“天書(shū)”大模型的最新動(dòng)態(tài)。歡迎蒞臨上海世博展覽館H1-C801展臺(tái)參觀交流!同時(shí),云天勵(lì)飛也將與中國(guó)電子、中國(guó)信通院、華為等合作伙伴,在WAIC的舞臺(tái)
近日,酷學(xué)院智能產(chǎn)品發(fā)布會(huì)在深圳閃亮登場(chǎng)。近200位現(xiàn)場(chǎng)觀眾和近萬(wàn)人次在線觀看,共同見(jiàn)證了這一激動(dòng)人心的時(shí)刻。發(fā)布會(huì)上,酷學(xué)院引領(lǐng)大家探索企業(yè)培訓(xùn)學(xué)習(xí)和人才發(fā)展領(lǐng)域的新高度,并揭幕其全新的產(chǎn)品智能升級(jí)和突破??釋W(xué)院產(chǎn)品負(fù)責(zé)人徐晨通過(guò)形象生動(dòng)、邏輯嚴(yán)謹(jǐn)?shù)闹v述,揭曉了全新的智能企業(yè)培訓(xùn)和人才發(fā)展平臺(tái),以
隨著人工智能技術(shù)的快速發(fā)展,各行各業(yè)都受到了深刻影響,特別是中小學(xué)人工智能教育的普及,已經(jīng)成為當(dāng)今不可忽視的重要課程。ChatGPT等人工智能技術(shù)的出現(xiàn),讓我們看到了人工智能將成為未來(lái)推動(dòng)科技跨越發(fā)展、生產(chǎn)力整體躍升的重要驅(qū)動(dòng)力量之一。在這個(gè)背景下,中小學(xué)教育已經(jīng)將人工智能作為重要學(xué)習(xí)內(nèi)容,并將科技
蘋(píng)果16弄了兩個(gè)版本,一個(gè)是專門(mén)給中國(guó)人用的,準(zhǔn)備用百度的AI,還要交錢。第二個(gè)是全世界都可以用的,用了ChatGPT,包括臺(tái)灣、香港、澳門(mén)都可以用。以后都這樣了。好,問(wèn)題就出在這,蘋(píng)果和百度的合作出現(xiàn)問(wèn)題了,新聞連起來(lái)看,才能明白其中含義。新聞一:蘋(píng)果正在和騰訊、字節(jié)初步接洽,考慮將二者的AI模型
“技術(shù)日新月異,人類生活方式正在快速轉(zhuǎn)變,這一切給人類歷史帶來(lái)了一系列不可思議的奇點(diǎn)。我們?cè)?jīng)熟悉的一切,都開(kāi)始變得陌生?!庇?jì)算機(jī)之父約翰·馮·諾依曼曾這樣說(shuō)到。
“人工智能的商業(yè)模式,是要?jiǎng)?chuàng)造一個(gè)市場(chǎng),而非一個(gè)算法”。這是世界AI泰斗MichaelI.Jordan的觀點(diǎn)。而當(dāng)前的全球AI市場(chǎng),占據(jù)主導(dǎo)地位的中美雙方,卻也走出了兩條截然不同的技術(shù)路徑,前者執(zhí)著于前沿技術(shù)的探索,后者則發(fā)力應(yīng)用優(yōu)化和商業(yè)化落地。南轅北轍的兩個(gè)方向,或許已經(jīng)無(wú)法直接進(jìn)行排位先后、優(yōu)
智能體進(jìn)化發(fā)展了一年,現(xiàn)在的RPAAgent迭代到什么程度了?從實(shí)在智能最新發(fā)布的實(shí)在Agent7.0,看RPAAgent的迭代升級(jí)抓取豆瓣信息、自己制作PPT,這款A(yù)IAgent真的實(shí)現(xiàn)了流程全自動(dòng)化AIAgent構(gòu)建到執(zhí)行全自動(dòng)化,持續(xù)進(jìn)化RPAAgent再次降低智能體應(yīng)用門(mén)檻實(shí)在智能重磅發(fā)布實(shí)
崔大寶|節(jié)點(diǎn)財(cái)經(jīng)創(chuàng)始人進(jìn)入2024年,大模型似乎有熄火之勢(shì):資本市場(chǎng),與之關(guān)聯(lián)的概念炒不動(dòng)了,英偉達(dá)股價(jià)動(dòng)輒暴跌重挫,引發(fā)“泡沫戳破”的擔(dān)憂;消費(fèi)市場(chǎng),BATH們的推新活動(dòng)少了,產(chǎn)品更新迭代的速度慢了,民眾的關(guān)注度降了……熱鬧的大概只剩下兩場(chǎng)酣仗:自5月15日字節(jié)跳動(dòng)宣布“以厘計(jì)費(fèi)”,打響國(guó)內(nèi)大模型
文|智能相對(duì)論作者|陳泊丞好消息!你心心念念的事業(yè)單位發(fā)錄取公告了!壞消息!他們沒(méi)錄你,錄了個(gè)數(shù)字人。圖片來(lái)源網(wǎng)絡(luò)隨著數(shù)字人技術(shù)的突破,越來(lái)越多的傳統(tǒng)企業(yè)和機(jī)構(gòu)開(kāi)始用上了“數(shù)字員工”。甚至很多中國(guó)人心心念念的“鐵飯碗”,也被這些數(shù)字人給捧上了。數(shù)字人捧上了“鐵飯碗”簡(jiǎn)單翻看一下全國(guó)各地事業(yè)單位的“錄
黑芝麻智能敲鐘后,港交所門(mén)口又有一些智駕芯片企業(yè)引發(fā)關(guān)注。據(jù)悉,近日地平線已通過(guò)中國(guó)證監(jiān)會(huì)IPO備案,擬發(fā)行不超過(guò)11.5億股境外上市普通股并在香港聯(lián)合交易所上市,預(yù)計(jì)籌集約5億美元資金。從天眼查可以了解到,該公司成立于2015年,是一家乘用車高級(jí)輔助駕駛(ADAS)和高階自動(dòng)駕駛(AD)解決方案供
8月21日,萬(wàn)眾矚目的2024世界機(jī)器人大會(huì)暨博覽會(huì)在北京亦創(chuàng)國(guó)際會(huì)展中心盛大開(kāi)幕。這場(chǎng)為期5天,集“展覽”“論壇”“賽事”于一體的機(jī)器人盛會(huì),反映了當(dāng)下機(jī)器人領(lǐng)域的繁榮生態(tài)。據(jù)官方統(tǒng)計(jì)數(shù)據(jù),今年現(xiàn)場(chǎng)逛展觀眾高達(dá)25萬(wàn)人次,比去年增加25%。機(jī)器人行業(yè)有多火?看看2024世界機(jī)器人大會(huì)火爆程度便可知